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Activation process in excitable systems with multiple noise sources: Large number of units
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We study the activation process in large assemblies of type II excitable units whose dynamics is influenced by
two independent noise terms. The mean-field approach is applied to explicitly demonstrate that the assembly of
excitable units can itself exhibit macroscopic excitable behavior. In order to facilitate the comparison between
the excitable dynamics of a single unit and an assembly, we introduce three distinct formulations of the assembly
activation event. Each formulation treats different aspects of the relevant phenomena, including the thresholdlike
behavior and the role of coherence of individual spikes. Statistical properties of the assembly activation process,
such as the mean time-to-first pulse and the associated coefficient of variation, are found to be qualitatively
analogous for all three formulations, as well as to resemble the results for a single unit. These analogies are
shown to derive from the fact that global variables undergo a stochastic bifurcation from the stochastically stable
fixed point to continuous oscillations. Local activation processes are analyzed in the light of the competition
between the noise-led and the relaxation-driven dynamics. We also briefly report on a system-size antiresonant
effect displayed by the mean time-to-first pulse.
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I. INTRODUCTION

For the wealth of local and intriguing collective phenomena
displayed, the large assemblies comprised of excitable units
have now been appreciated as a distinct class of dynamical
systems. In terms of theory, the fundamental issue for under-
standing these systems is whether their macroscopic dynamics
itself exhibits excitable behavior. The other important issue
naturally concerns the relation between such macroscopic
excitability and noise. So far, stochastic effects have been
identified as a major factor contributing to the collective
behavior of systems of excitable units [1–12].

In this paper, we study large assemblies consisting of
noisy type II excitable elements, which are represented by the
canonical Fitzhugh-Nagumo (FHN) model. Conceptually, our
focus will lie with two main points: (i) demonstrating that an
assembly made up of excitable units can itself be considered a
macroscopic excitable element and (ii) identifying the analo-
gies and pointing out the differences between the excitable
behaviors of a single unit and an assembly.

Note that point (i), at least to our knowledge, has not been
treated explicitly so far. In particular, the main obstacle for
analytically approaching this issue is that the macroscopic
dynamics of an assembly of stochastic FHN units cannot
be expressed in a closed form via the global variables,
which would otherwise make up a standard and the desired
form of describing the collective motion. Some alternative
forms of analysis are not available due to complexity of
the corresponding Fokker-Planck equation that assumes an
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integrodifferential form. In order to resolve this and explicitly
demonstrate the excitability feature at the assembly level, we
use an approach that relies on the mean-field (MF) approximate
model of the assembly’s collective motion. In several recent
papers, the MF model has already proven successful in the
analysis of systems described by large sets of stochastic (delay)
differential equations, in particular when treating stability of
the stationary state, as well as the scenarios for the onset and
the suppression of the collective mode [13–15].

Analysis on point (ii) can be carried out at two levels,
one focused on the phenomenology involved and the other
concerning the statistical properties of the corresponding
noise-driven activation processes. In terms of phenomenology,
the excitability feature refers to capability of systems to
generate spiking (pulselike) responses or small-amplitude
excitations, which are separated by some form of threshold.
For a single unit, the large-amplitude response is composed of
the activation and the relaxation stages, such that the former
is strongly influenced by noise, whereas the latter is typically
deterministic and maintains a stereotype profile in a broad
range of noise values. Among else, the stereotype character of
pulse implies that its amplitude and width are independent on
the form of perturbation applied.

The stated arguments on the notion of excitability should
naturally hold in case of an assembly as well. Nevertheless,
what may differ are the details related to the assembly’s
thresholdlike behavior, which by itself stands out as a highly
nontrivial issue. Another point of difference concerns the
local mechanisms by which excitations of units within a
population are elicited. In particular, each unit may be evoked
to emit a pulse either by noise or via the interaction terms.
Adhering to the formulation of an activation event for an
excitable unit stated in our previous paper [16], the latter
point does not merely imply that the activation processes
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of individual units cannot be considered independent, as if
they were driven by uncorrelated random perturbations, but
more significantly indicates that the activation process of an
arbitrary unit may be influenced by the relaxation processes
of other units. The third point one should stress concerns the
process of spike emission at the assembly level. In particular,
having accepted the description of collective motion in terms
of global variables, one should also bear in mind that their
amplitude is affected by coherence of individual spikes,
such that the increased coherence implies larger amplitude
of the relevant macroscopic variable. By such a concept,
evoking a large-amplitude excitation requires that the spikes
for a sufficient fraction of individual units become coherent.
Analyzing coaction of activation and relaxation processes for
individual elements, as well as the role of spike coherence with
respect to assembly pulse emission, present intricate issues,
absent if small groups of units are considered.

Apart from phenomenological aspects, the comparative
analysis of excitable behaviors of a unit and an assembly
will address the respective noise-driven activation processes.
In analogy to our paper on a single excitable unit and
two interacting excitable units [16], we associate the term
activation solely to the assembly’s large-amplitude excitation.
In principle, the definition of assembly activation problem
should incorporate appropriate boundary conditions, which
provide a clear-cut distinction between the small- and the
large-amplitude excitations. Nevertheless, while a single most
adequate and relevant definition for the activation problem may
be given in cases of an excitable unit or a pair of units [16],
the specific character of global variables, or rather the fact that
their amplitudes depend on coherence of individual spikes,
prevents us from establishing such a formulation in case of
an assembly of excitable elements. Instead, we introduce three
alternative formulations of the assembly activation event which
emphasize different aspects of the relevant phenomena. Their
merit will depend on the aims of the particular study of
assembly dynamics and the fashion in which one can adapt
them to potential applications.

Two of the formulations rest on the standard description of
collective motion in terms of global variables and are intended
precisely at examining the analogy between the excitable
behaviors of a single unit and an assembly. In particular, one
formulation is consistent the threshold boundary approach for a
FHN unit (terminating boundary condition given by a thresh-
old x value), whereas the other derives from characteristic
boundary approach (terminating boundary conditions given
by an appropriate boundary set). Nevertheless, for comparison
we also adopt a formulation where the assembly activation
is treated as a compound event, comproed of only first-pulse
responses of a sufficient fraction of participant units, regardless
of whether the emitted spikes are coherent. The implications
of the three formulations are analyzed in terms of statistical
properties of the corresponding activation events, character-
ized by the dependencies of the time-to-first pulse emission
(TFP) and the related coefficient of variation on noise.

The paper is organized as follows. Section II provides
the background on the applied model. Section III addresses
the details of the assembly’s excitable behavior, including
the analysis carried out on the deterministic MF approxi-
mation. Section IV lays out the three formulations of the

assembly activation event. Section V contains the detailed
numerical analysis on the statistical properties of activation
events conforming to the three adopted formulations. We
also consider the qualitative explanation for the bimodal or
unimodal distributions of local activation events typical for
certain domains of noise intensities. Section V D concerns the
effects related to system size, including the “antiresonance”
found for the mean TFPs at fixed noise intensities. Section VI
provides a brief summary of our main points.

II. DETAILS OF THE APPLIED MODEL

As a paradigm for analyzing collective excitable behavior,
we consider an assembly comprised of FHN units. The
dynamics of an arbitrary unit i is given by

dxi = (
xi − x3

i /3 − yi

)
dt + c

N

N∑
j=1

(xj − xi)dt +
√

2D1dWi
1

dyi = ε(xi + b)dt +
√

2D2dWi
2,i = 1, . . . N, (1)

where b and ε are the intrinsic unit parameters, while c denotes
the coupling strength. The units are assumed to be identical and
are connected in the all-to-all fashion. Parameter ε is set to a
small value ε = 0.05, which warrants that the characteristic
time scales for xi and yi evolution are sharply separated.
Being type II excitable means that the units are poised close to
transition toward oscillatory state via the Hopf bifurcation [2].
The bifurcation parameter b is set to 1.05, the value just below
critical threshold. Excitability feature of a single FHN unit
has been extensively analyzed [1,2,17], and an overview can
also be found in our preceding paper [16]. At variance with
the latter, the perturbation here may either arrive from the
interaction terms or may be caused by random fluctuations due
to two independent sources of noise. Motivated by the possible
interpretation in the field of neuroscience [17,18], we adopt
the convention by which the stochastic terms in the fast (slow)
variables are referred to as external noise D1 (internal noise
D2). Note that dWi

k ,k ∈ {1,2},i = 1, . . . ,N denote stochastic
increments of independent Wiener processes whose averages
and correlations satisfy 〈dWi

k〉 = 0, 〈dWi
kdW

j

l 〉 = dtδklδij .
In order to gain insight into the assembly’s collective

dynamics, one may first carry out the bifurcation analysis
of the deterministic (noiseless) version of system (1). For
N sufficiently large so the terms O[(c/N )2] and of higher
order can be neglected, the characteristic equation describ-
ing the stability of equilibrium (x1,y1,x2,y2, . . . ,xN ,yN ) =
(−b,−b + b3/3,−b,−b + b3/3, . . . ,−b,−b + b3/3) is given
by an approximate expression

(λ2 − (1 − b2)λ + ε)(λ2 − (1 − b2 − c)λ + ε)N−1 = 0. (2)

Since b = 1.05 is kept fixed, it follows that the equilibrium
may become unstable only via the direct supercritical Hopf
bifurcation controlled by c. Nonetheless, the critical c value
is c∗ = 1 − b2 < 0, which implies that the positive coupling
strengths do not affect the stability of equilibrium. In the
present paper, we only consider the subcritical values c > 0,
such that the system (1) always lies in the excitable regime.

As for the impact of stochastic fluctuations on the asymp-
totic collective dynamics, it is known that the noise intensity
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may act as a control parameter in excitable media, giving
rise to three generic regimes of macroscopic behavior [3].
In particular, when noise is systematically increased, the
dynamics of global variables undergoes a sequence of tran-
sitions, first exhibiting the stochastically stable equilibrium
and then the stochastically stable limit cycle, and eventually
it decays into disordered behavior. This sequence may be
explained as follows. In the approximately stationary state,
at any given moment, most of the units lie in the vicinity
of equilibrium, whereas the relatively rare excursions due
to weak noise or the interaction terms remain incoherent.
Therefore, the macroscopic variables only marginally differ
from equilibrium values of single elements. At some point, the
increase of noise induces more or less coherent oscillations of
units which are easy to synchronize. This conforms to the
onset of the collective mode according to the scenario of
stochastic bifurcation [19–22]. In the supercritical state, the
global variables follow a limit cycle attractor whose profile
is similar to that of relaxation oscillations of individual units.
Once the noise intensity becomes strong enough to overcome
the effect of couplings, the disordered regime sets in. The
spiking frequency of units remains high, but their activity
desynchronizes. Since the majority of units at any moment
are refractory, global variables display irregular oscillations
with a quenched amplitude.

From our perspective, the conceptually most important
transition is the one associated to occurrence of noise-induced
collective oscillations. This phenomenon is relevant for the
activation process because it indicates the loss of stochastic
stability for the fixed point. In other words, under increasing
noise, the attractive ability of the fixed point gradually reduces
and is eventually lost, which naturally affects how the phase
point escapes the vicinity of equilibrium. Note that the above
sequence of states has previously been verified in case of
an assembly of FHN elements driven by internal noise. We
have found that the similar sequence persists if the units are
influenced by external noise, though the individual activities
become more difficult to synchronize, rendering the amplitude
of collective oscillations comparably smaller than the one
emerging under internal noise.

III. EXCITABLE BEHAVIOR AT THE ASSEMBLY LEVEL

Having summarized the points relevant for the
deterministic part of dynamics described by (1), we
turn to characterization of the assembly’s excitability feature.
The standard approach to collective motion is to introduce
the macroscopic variables X(t) = 〈xi(t)〉 = 1

N

∑N
i=1 xi(t) and

Y (t) = 〈yi(t)〉 = 1
N

∑N
i=1 yi(t), whereby the aim typically lies

in establishing some form of analogy between the dynamics
of single units and an assembly. The latter would be especially
relevant for examining the issue of excitability at the assembly
level. Nevertheless, it is evident that the compound effect
of nonlinear terms prevents the whole assembly to evolve
in a fashion analogous to that of a single unit, which would
occur only if 〈x3

i 〉 = 〈xi〉3 were to hold. Therefore, the
collective dynamics in principle cannot be expressed in a
closed form via the global variables. The other potential
approaches to analysis of macroscopic excitable behavior are

severely limited by the difficulties associated to Fokker-Plank
formalism, where the equation for the one-particle density
P (x,y,t) acquires a complex integrodifferential form ∂

∂t
P= −

∂
∂x

[x(1−c)− x3

3 −y+c
∫

x1P (x1,y1,t)dx1dy1]P − ∂
∂y

ε(x + b)

P + D1
∂2P
∂x2 + D2

∂2P
∂y2 .

The arguments above imply that one is required to introduce
approximations for collective dynamics corresponding to the
deterministic part of system (1) in order to analyze the
assembly excitability feature and the associated thresholdlike
behavior. In the following, we consider two approximate
models of collective motion, distinguished by the fashion in
which the effect of interaction terms is resolved. The first
model holds if the interaction terms vanish or can be neglected.
Note that this condition is satisfied if the initial conditions for
all the units are identical or lie close to each other. Since the
evolution of the system is deterministic and the coupling is
diffusive, such a selection of initial conditions facilitates that
the whole assembly acts as a macroscopic excitable element.
The evolution of global variables is then given by the equations
analogous to those for a single unit,

dX = (X − X3/3 − Y )dt

dY = ε(X + b)dt. (3)

The details regarding the excitability feature of such a system
are well established [17]. In particular, recall that its threshold
behavior is associated to the “ghost separatrix,” a thin layer
composed of canardlike trajectories that foliate around the
maximum of the fast-variable nullcline, whereby the spread
increases with the characteristic scale separation ratio ε.

Let us now consider a more sophisticated approximation
that takes into account the net effect of the interaction
terms. The analytical framework suitable for demonstrating
the assembly excitability feature in this more general case
is provided by the mean-field approach. Before laying out
the details, we make an overview of the ingredients crucial
for the derivation of the MF model, as well as the results
achieved so far on treating the systems of large sets of
stochastic- (delay) differential equations. In principle, deriving
the MF model involves a number of nontrivial elements,
and it ultimately leads to a deterministic system amenable
to standard bifurcation analysis, where noise intensity may
act as a bifurcation parameter. The MF method combines the
cumulant approach with Gaussian approximation, according
to which all the cumulants above second order are assumed to
vanish. The latter is intended as a closure hypothesis, which
is necessary due to presence of nonlinear terms in the exact
system (1). Thus, starting from the original system which in
general comprises kN (delay) differential equations, where k

is the number of local degrees of freedom, one ends up with a
set of k(k + 3)/2 deterministic (delayed) equations describing
the evolution of the means, as well as the appropriate variances
and the covariances.

As for the main results achieved thus far, the MF method has
already been applied in analyzing the stability of assemblies of
(delay-) coupled excitable elements, as well as the scenarios
for the onset and the suppression of the collective mode. In
particular, the bifurcations displayed by the MF model can
qualitatively account for the stochastic bifurcations which the
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exact system undergoes [1,4,5,13,14,23–25]. It has also been
shown that the MF model can provide accurate quantitative
predictions, reflected in a close agreement between the oscilla-
tion period of the MF model and the average oscillation period
of the exact system [13,14]. Furthermore, the MF approach
has proven successful in the analysis on stability and the onset
or suppression of the collective mode in case of interacting
assemblies, thereby indicating a potential extension to modular
networks [14]. We stress that the approximations behind the
MF model used here, called the Gaussian approximation and
the quasi-independence approximation, have been analyzed in
detail, not only in terms of precise formulations and adaptation
for the systems of class II excitable units but also with respect
to parameter domains that warrant their validity [15]. In this
context, an important finding is that the dynamics of the MF
model can indicate in a self-consistent fashion the parameter
domains where the MF approximations break down.

The MF model corresponding to (1) involves five
equations describing the evolution of the means mx(t) =
E[xi(t)],my(t) = E[yi(t)], the variances sx(t) = E[xi(t) −
〈xi(t)〉]2),sy(t) = E[(yi(t) − 〈yi(t)〉]2), and the covariance
u(t) = E[(xi(t) − 〈xi(t)〉][yi(t) − 〈yi(t)〉]. Note that E(·) de-
notes expectations over an ensemble of different stochastic
realizations. The detailed derivation of the MF model may be
found in Refs. [13,14], whereas here we just state the final
result:

ṁx = mx − mx(t)3/3 − sxmx − my,

ṁy = ε(mx + b),

ṡx = 2sx

(
1 − m2

x − sx − c
) − 2u + 2D1

ṡy = 2εu + 2D2,

u̇ = u
(
1 − m2

x − sx − c
) + εsx − sy. (4)

As already indicated, the influence of stochastic terms is
expressed through the noise intensities D1 and D2.

Nevertheless, in order to make the analogies between the
excitable behaviors of a single FHN unit and an assembly
explicit, one should arrive at the system describing the
collective motion by two equations. The latter would allow one
to apply the phase plane analysis derived from the framework
of singular perturbation theory. This is achieved by introducing
an additional “adiabatic” approximation [1], which consists
in assuming that the relaxation of second-order moments is
much faster than that of the first-order ones. This is not a
crude approximation given that the initial conditions of units
in the exact system are set to be identical (coinciding with the
deterministic fixed point), especially if the noise intensities
are not too large. Having replaced the fast variables with the
stationary values, one obtains the following system for the
dynamics of the means:

dmx

dt
= F (mx,my) = mx − 1

3
m3

x − my − mx

2
(1 − c)

−m2
x +

√(
1 − c − m2

x

)2 + 4(D1 + D2/ε)

dmy

dt
= G(mx,my) = ε(mx + b). (5)

FIG. 1. (Color online) Characterization of the assembly excitable
behavior via the phase plane analysis of the corresponding MF
model (5). The equilibrium (EQ) lies at the intersection of the
nullclines F (mx,my) = 0 and G(mx) = 0. The mx nullcline is
composed of three branches, whereby the spiking and the refractory
branches SS and SR are attractive. For finite ε, the boundary between
the sets of initial conditions that lead to small- or large-amplitude
excitations, SAE and LAE, respectively, foliates into a thin layer
of canardlike trajectories (CNR), which we refer to as the “ghost
separatrix” (solid black lines). The trajectories belonging to the
boundary layer are obtained by fixing the mx initial condition to
a particular value mx,0 = −3, while sweeping over my,0. The fact
that a difference in my,0 of the order of 10−18 evokes a different
type of response corroborates extreme sensitivity to initial conditions
in vicinity of the ghost separatrix. The results shown refer to case
ε = 0.07,b = 1.05.

An apparent advantage of (5) is that one may extend the
results of phase plane analysis to assembly dynamics, thereby
gaining insight into whether and how the excitability feature
is manifested at the level of global variables.

The main point is that the system (5) displays class II ex-
citable behavior, which provides an indication that the collec-
tion of excitable FHN units described by (1) itself constitutes
a macroscopic excitable system. The mx and my nullclines,
as well as an illustration of how the two marginally differ-
ent initial conditions give rise to small- or large-amplitude
responses, are provided in Fig. 1. Note that the results are
obtained for system (5) under D1 = D2 = 0. The mx nullcline
again consists of three branches, such that in the singular limit
ε → 0 the spiking branch SS and the refractory branch SR are
attractive, whereas the middle branch is unstable. Compared
to the case of single unit, the profile of the middle branch is
changed and includes a flexion point, which may be attributed
to the compound effect of interaction between the units. The
two types of population response to perturbation, or rather the
associated thresholdlike behavior, imply the existence of a soft
boundary between the corresponding initial conditions.

Carrying out the analysis analogous to that for a single unit,
described in brief in the caption of Fig. 1, one may show that the
boundary is again given by a thin layer of system trajectories
which foliate around the maximum of the mx nullcline. The
relevant segments of such trajectories are indicated in Fig. 1 by
the black solid lines. What is found is quite reminiscent to the
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“ghost separatrix” in case of a single excitable unit [17]. The
foliation here also becomes more pronounced with increasing
ε. Compared to those for a single unit [17], the trajectories
that make up the boundary layer are seen to converge further
away from the maximum, mainly because the unstable branch
in case of an assembly involves a flexion point. Also, the
numerical evidence suggests that the mean-field variables,
and therefore the collective dynamics of the assembly, shows
greater sensitivity to initial conditions compared to that of a
single unit. This conclusion follows from the fact that under
analogous parameter values, obtaining the trajectories that
belong to boundary set requires a higher numerical precision in
case of the MF model than for a single unit, cf. [16] and Fig. 1.

Note that in Sec. V we use the MF model to gain insight
into the stochastic stability of equilibrium of the exact system
or rather the latter’s sensitivity to random perturbations. This
point will be crucial for explaining how the form of the
τ (D1,D2) dependence is related to the stochastic bifurcation
leading from the stochastically stable fixed point to continuous
oscillations.

IV. ALTERNATIVE FORMULATIONS OF ASSEMBLY
ACTIVATION PROBLEM

As announced in the Introduction, we consider three
alternative formulations of the activation problem, which are
associated to different definitions of the assembly activation
event. Since the conceptual aspects of a large assembly’s
activation problem have not been treated so far, one cannot a
priori hold any formulation preferred over the others. Thus, the
implications of each of the formulations will be qualitatively
analyzed and then compared. Note that the physical picture laid
out here is distinct from the cases of a single and two coupled
excitable units treated in our previous paper [16], where we
have been able to provide a unique adequate formulation of
the activation event, which allows an immediate generalization
from a single unit to a two-unit setup. To properly address the
issue of assembly activation, one should invoke a couple of
remarks from that study.

First, the activation problem we consider is associated to
pulse emission and as such cannot be viewed as an extension
of a typical escape problem. Note that the latter would require
a genuine saddle structure at the terminating boundary [26],
which implies coexistence between two attractors, whereas in
our problem the fixed point is the only relevant, and often
the unique, attractor. In terms of specifying the terminating
boundary, an important point has been to replace the somewhat
arbitrary notion of “threshold” for pulse emission by the rele-
vant boundary set consistent with the underlying structure of
the phase space. Finally, in the case of two units, we have
argued that the definition of an activation event where the
phase points of each unit are supposed to reach the appro-
priate terminating boundary is preferred over any formula-
tion involving the two-unit averages [x1(t) + x2(t)]/2 and
[y1(t) + y2(t)]/2. This applies because the averages contain
additional information on synchronization of units, which are
secondary to the two-unit activation process. Nevertheless,
such an approach can only be maintained for small groups
of units. For larger assemblies, it is of interest to state the
activation problem in terms of global variables, since they

present a standard tool for describing collective motion, both
theoretically and in applications.

The point which makes the case of large populations
intriguing concerns the underlying mechanisms of activation.
In particular, the processes on local and global levels are
not influenced only by noise but also by the relaxation of
units. The arguments above further suggest that an elaborate
study on analogies and differences between the statistical
properties of activation process in small groups of units and the
large assemblies would be in order. Therefore, our approach
is on one hand to retain the formulation of the assembly
activation problem inherited from the two-unit case where
the global variables are not considered and, on the other hand,
to introduce two additional formulations that explicitly refer
to dynamics of global variables. These three formulations are
specified as follows.

Formulation 1. The assembly activation event occurs when
more than a half of participant units have emitted their first
pulses. According to this, assembly activation is perceived
as a compound event made up of local activation events.
For the local events we adopt the definition provided in our
previous paper [16]: The activation path of a single excitable
unit influenced by noise emanates from the deterministic fixed
point and terminates at the boundary set coinciding with
the spiking branch of the limit cycle which would exist in
the corresponding supercritical state. In the present context,
the terminating boundary set can with sufficient accuracy be
approximated by the spiking branch of the cubic nullcline for
a noninteracting unit. Motivation behind formulation 1 draws
in part from certain applications, especially in the field of
neuroscience, where population response to external stimuli
typically engages a certain fraction of units rather than the
entire assembly [27–32]. From the qualitative perspective,
demanding any reasonable macroscopic fraction other than
a half of units to be activated makes as good a choice as any,
because the main statistical properties of the ensuing activation
process will remain similar. In a sense, formulation 1 can be
interpreted as an extension of the definition introduced for a
two-unit activation event in our previous paper [16].

Formulation 2. The assembly activation event occurs
if the global variable X(t) crosses the predefined thresh-
old X0[X(t) > X0,X

′(t) > 0]. Unlike the case of a single
unit [16,17], the formulation involving an explicit threshold is
justified for the global variable because its amplitude depends
on coherence of spikes of single units. The latter point intro-
duces ambiguities when attempting to analyze the assembly
thresholdlike behavior. In other words, for a single unit, it is not
difficult to distinguish between the small- and large-amplitude
responses, given that the amplitude of superthreshold excita-
tions is stereotypical. However, in case of an assembly, one is
able to understand the associated thresholdlike behavior only
in terms of the approximate MF model, cf. Sec. III, but cannot
provide clear-cut criteria in terms of global variables of the
exact system, especially if coherence of units’ activities for
the given parameter set is weak. This point will be further
explained when discussing formulation 3, while here we just
mention that noise domains may be found where formulation 2
is more or less suitable. Compared to formulation 1, formula-
tion 2 is conceptually distinct because the assembly activation
events can be affected by multiple spikes of individual units.

062912-5
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The potential consequences of selecting particular threshold
values X0 will be discussed in the next section.

Formulation 3. The assembly activation event occurs once
the phase point associated to global variables reaches the
appropriate terminating boundary set, defined in analogy
to a single unit case. This formulation involves an implicit
assumption that the thresholdlike behavior of an assembly is
qualitatively similar to that of individual units. As indicated
in Sec. III, if the condition 〈x3

i (t)〉 ≈ 〈xi(t)〉3 is fulfilled, then
the dynamics of global variables can be approximated by the
equations analogous to that of a single unit. Consistent with
this approximation, the collective motion of finite assemblies
in presence of noise may be described by [3,33]

dX = (X − X3/3 − Y )dt +
√

2D1

N
dW1

dY = ε(X + b)dt +
√

2D2

N
dW2. (6)

As a corollary, one may use the phase plane analysis and
describe the assembly first-pulse emission in terms of motion
of phase point (X,Y ) to the spiking branch of the corresponding
X nullcline, which is then naturally considered the relevant
terminating boundary set for the assembly activation problem.
Nevertheless, the given physical picture is valid only if the
fluctuations of individual units are small enough for the above
condition to apply, which ultimately depends on the noise
intensities.

An important note on formulation 3 is that coherence
between spikes (approximate matching of spike times) of
a large fraction of individual units is required to elicit an
assembly activation event, viz. the first-pulse emission for the
global variables. For this point, let us make additional remarks
on the issues of terminating boundary conditions and the role
of spike coherence in the assembly activation process. First,
there is no principle difference in the dynamics underlying
activation scenarios for three formulations of the assembly
activation event. The differences in statistical features, which
will be discussed in the next section, are caused by the
selection of terminating boundary conditions. This is made
explicit in Fig. 2, where a single stochastic orbit for (X,Y )
is used to illustrate the difference between formulations 2
and 3. According to formulation 2, the assembly has emitted
a pulse once X crosses a certain threshold (segment of the
trajectory indicated by the dashed red line), while formulation
3 requires that the phase point reaches the spiking branch of
the X nullcline (segment of the trajectory indicated by the
solid black line). Thus, considering the very same stochastic
trajectory for (X,Y ), the assembly activation event conforming
to formulation 2 would have happened earlier than the one
satisfying formulation 3. Nevertheless, both of the considered
sections of the (X,Y ) orbit correspond to large excitations far
above the stochastic fluctuations in vicinity of equilibrium. In
fact, which excitation should be considered an activation event
effectively depends on the scope of the study. In this context,
formulation 2 is more adapted to practical applications,
whereas formulation 3 has a more theoretical background.

Comparing Fig. 1 and Fig. 2, one should point out that the
latter captures certain fine details on collective dynamics that
cannot be reflected in the former. This is because the physical

FIG. 2. (Color online) Illustration of differences between formu-
lations 2 and 3. For certain (D1,D2), the assembly thresholdlike
behavior is difficult to resolve because the amplitude of large
fluctuations is not stereotypical. The presented (X,Y ) orbit is
obtained for a single stochastic realization under parameter set
D1 = 0.0004,D2 = 0.0008,c = 0.1,N = 50. The bold dotted line
indicates the X nullcline consistent with the approximate system (6).
Apart from small-amplitude excitations that remain in close vicinity
of deterministic fixed point, one also finds substantially larger
excitations far above the stochastic fluctuations around the “stable
state,” where the phase point may either fall short of the spiking
branch of the X nullcline (segment of trajectory shown by the orange
dashed line) or may actually reach it (segment indicated by the solid
black line). The former instance conforms to an activation event by
formulation 2 but does not comply with formulation 3. The criteria
as to which large excitation is considered an assembly activation
ultimately depends on the scope of the particular study.

background of Fig. 1 lies in the approximate MF model, where
the stochastic fluctuation effects above the second order are
averaged out. In other words, the behavior of the exact system
in Fig. 2 is associated with large fluctuations, which can no
longer be described by the MF model.

V. STATISTICAL PROPERTIES OF ACTIVATION PROCESS

A. Mean TFPs and TFP variability

The statistical properties of the assembly activation process
influenced by external and internal local noise are char-
acterized by the mean TFP τ (D1,D2) and the associated
coefficient of variation R(D1,D2) [34–36]. Both quantities
involve averaging over an ensemble of different stochastic re-
alizations. In particular, the mean TFP is given by τ (D1,D2) =
〈τk〉 = 1

nr

∑nr

k=1 τk(D1,D2), where nr denotes the number
of realizations, while the expression for the coefficient of

variation reads R(D1,D2) =
√

〈τ 2
k 〉−〈τk〉2

〈τk〉 . Since R is variation
of TFPs normalized by the mean, its smaller values indicate a
better clustering of individual TFPs around τ [37]. Note that
the numerical simulations are carried out via Heun integration
scheme with the fixed time step δt = 0.002. The results for the
mean TFPs and the variances are obtained by averaging over an
ensemble of at least 300 different stochastic realizations of the
activation process. For each realization, the initial conditions

062912-6



ACTIVATION PROCESS IN EXCITABLE SYSTEMS WITH . . . PHYSICAL REVIEW E 92, 062912 (2015)

(d)

FIG. 3. (Color online) Mean TFPs for the assembly activation process and the role of stochastic bifurcation. Panels (a), (b), and (c) show
τ (D1,D2) dependencies for formulations 1–3 of the activation event, respectively. Results are obtained for c = 0.1 and the assembly size
N = 100, whereby the stochastic average is taken over an ensemble of 300 different activation paths. The inset in (a) illustrates exponential
divergence of τ (D2) for fixed D1 = 10−5 as one approaches D∗

2 ≈ 1.25 × 10−5 (the value indicated by the dotted line). The qualitative similarity
between the τ (D1,D2) dependencies in (a), (b), and (c) is associated to stochastic bifurcation underlying transition to continuous oscillations.
The corresponding bifurcation curve D2(D1), determined by analyzing MF model (5), is shown in (d).

for all units are identical and are given by the deterministic
fixed point of system (1).

The fields τ (D1,D2) corresponding to formulations 1–3 of
the assembly activation event are plotted in Figs. 3(a), 3(b),
and 3(c), respectively. Note that all three dependencies exhibit
qualitatively similar behavior, whereby one can clearly discern
the domain of large mean TFPs and the plateau region. We
find that these analogies derive from the fact that the profile
of τ (D1,D2) dependencies in each of the instances is crucially
influenced by the stochastic bifurcation. The latter corresponds
to the noise-induced transition from the stochastically stable
fixed point to continuous oscillations. It is intuitively clear that
the stochastic bifurcation should be associated to boundary
between the two characteristic forms of τ behavior, because
above the bifurcation the fixed point loses its attractive power,
which makes it easier for noise to induce large-amplitude
fluctuations. Also, once the attractive power of the fixed point
is lost, any further increase of noise cannot induce qualitatively
novel effects. This fact accounts for the existence of the
large plateau region in the τ (D1,D2) dependence. As already
indicated, we may gain insight into stochastic bifurcation by
carrying out bifurcation analysis on the MF counterpart (5) of
the exact system. In particular, it is demonstrated that the MF
model undergoes direct supercritical Hopf bifurcation which
qualitatively reflects the stochastic bifurcation of the exact
system. The Hopf bifurcation curve D2(D1) obtained for the
MF model at fixed c = 0.1 is shown in Fig. 3(d).

Note that for small (D1,D2) the mean TFPs grow extremely
large. This is explicitly illustrated in the inset of Fig. 3(a),
which shows shows that τ (D2) (for fixed small D1) expo-
nentially diverges as a certain value of noise intensity D∗

2 is
approached. The latter point clearly demonstrates the existence
of potential barrier associated to the assembly’s activation
process. The lower boundary on noise intensities that facilitate
activation is the largest for formulation 3 and decreases for
formulations 2 and 1. The reason behind such a behavior will
be considered below.

In quantitative terms, the τ dependencies for formulations
1–3 manifestly differ in the regime subcritical relative to
stochastic bifurcation. In particular, Fig. 3 shows that the
corresponding τ values for the same noise intensities are
typically ordered as τ1 < τ2 < τ3. This may be explained by
looking into the role played by the spike coherence between
the individual units in the respective assembly activation
processes. Let us focus first on the adjustment between the
local time series xi(t) prior to assembly activation, see Fig. 4.
Naturally, the early spikes of single units will be the least
coherent because the firing is driven by noise, and the effect
of diffusive coupling in bringing their firing times closer is
weakly felt. As the time passes, the impact of coupling on
units’ dynamics is felt more strongly, which gradually leads
to a buildup of spike coherence within the assembly. In other
words, firing of individual units will become more coherent
(more spikes fall within a relatively narrow time window)
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FIG. 4. (Color online) Buildup of spike coherence prior to assem-
bly activation event. The data concern a single stochastic realization
of the assembly activation event consistent with formulation 2
(X0 = 0.4). The dotted line shows the X(t) dependence, whereas the
solid lines refer to the appropriate time series of individual units xi(t).
The system parameters are D1 = 0.0001365, D2 = 0.0001, c = 0.1,
N = 100.

as the result of interactions. With time, such approximate
synchronization may comprise an increasing number of units,
depending on the c value.

Now we consider how this reflects to assembly activation
for different formulations of the activation event. Formulation
1 requires only that more than half of units have emitted their
first spikes, imposing no demand for their coherence. In line
with the above arguments, satisfying such a requirement will
take the least amount of time, which means that the pertaining
τ will be smaller compared to mean TFPs for formulations
2 and 3 under the same parameter set. Formulations 2 and 3
concern the global variables and thereby do require a certain
level of spike coherence within the assembly. Formulation 3
imposes a more strict condition, so its fulfillment is associated
to the largest level of spike coherence. Achieving a larger level
of spike coherence takes more time, so in the subcritical regime
TFPs for formulation 3 will necessarily be larger than those for
formulation 2. It is also apparent that the assembly activation
will necessarily be induced by the first spikes of single units
only for formulation 1, whereas activation by formulations 2
and 3 is bound to be contributed by latter spikes of individual
units. Above the stochastic bifurcation, coherence of spikes
between the units is naturally achieved, such that the assembly
activation for all three formulations is contributed by the first
spikes of units. This is the reason why the mean TFPs for
(D1,D2) above the bifurcation have similar values for all three
formulations of the activation event.

Before proceeding, we make a brief remark on certain
details related to formulation 2 of the activation event. As
indicated in Sec. IV, it has to be verified whether the results
on statistical properties of the activation process depend on
the particular value of the threshold X0. We have established
that for any reasonable selection, viz. the X0 values lying
sufficiently above the amplitude of stochastic fluctuations
around the fixed point, the corresponding dependencies
τ (D1,D2) maintain qualitatively similar profile. This holds
for X0 values within the range X0 ∈ [−0.1,1.3]. Considering

FIG. 5. Impact of different X0 on the results for formulation 2 of
activation event. The example provided illustrates the form of τ (X0)
dependence typical in a broad range of (D1,D2,c,N ) values. One finds
similar behavior for all the other statistical quantities considered. The
particular data are obtained for D1 = 0.0207018, D2 = 0.00101739,
c = 0.1, N = 100, with the stochastic averaging carried out over an
ensemble of 500 different activation paths. The results imply that the
statistical properties of activation process derived from formulation
2 are qualitatively independent of X0.

τ values as an example, we have shown that τ (X0) for arbitrary
(D1,D2) monotonously increases until reaching saturation
around X0 ≈ 1.2, see Fig. 5. The analogous conclusions
regarding the qualitative independence of the results on X0

have been confirmed for all the other statistical properties of
the activation process.

Let us now examine the impact of two different noise
sources on the behavior of R in view of the different
formulations of the assembly activation event. The three
characteristic setups we consider are as follows. Figure 6(a)
refers to R(D1) dependence for the fixed very small D2,
whereas in Fig. 6(b) is shown the R(D2) dependence for the
fixed very small D1. Finally, Fig. 6(c) illustrates the behavior of
R(D1) when D2 is fixed at an intermediate value. Comparing
Fig. 6(a) and Fig. 6(b), it stands out that formulation 1, on
one hand, and formulations 2 and 3, on the other hand, yield
substantially different R dependencies both below and above
the stochastic bifurcation, cf. Fig. 3(d). Below the bifurcation,
the respectively smaller R values obtained under formulation
1 indicate that the corresponding activation process is more
homogeneous compared to processes conforming to formu-
lations 2 and 3. Furthermore, under formulations 2 and 3,
the fluctuations around the mean TFP expectedly increase in
the noise domain that gives rise to stochastic bifurcation. The
large R values found there indicate strong irregularity of firing
times over an ensemble of different stochastic realizations, cf.
the peaks in Fig. 7(a) and Fig. 7(b). Sufficiently above the
bifurcation, the R values decrease for all three formulations.
Nevertheless, in the stochastically supercritical state, the
physical picture regarding the three formulations is in a sense
reversed compared to the subcritical state. The deviations
from the mean TFP with D1 are the largest for the activation
process conforming to formulation 1, whereas R values for
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FIG. 6. (Color online) Impact of two noise sources on variability of assembly activation process. The R values corresponding to formulations
1–3 of the activation event are represented by open squares, solid circles, and open triangles, respectively. In (a) is provided the R(D1) dependence
for fixed D2 = 0.00005, whereas (b) shows the R(D2) behavior at fixed D1 = 0.00062. Panel (c) refers to R(D1) dependence for D2 = 0.00459.
The noise values kept fixed in (a) and (b) are small, such that the system undergoes stochastic bifurcation under variation of D1 in (a) and D2

in (b). The D2 value in (c) is supercritical relative to stochastic bifurcation. The remaining system parameters are c = 0.1,N = 100.

formulations 2 and 3 are smaller and fairly insensitive to noise
increase, at least for sufficient D1. An interesting remark is
that by adhering to formulation 1, as opposed to formulations
2 and 3, the coefficient of variation never crosses 1, the value
characteristic for the exponential distribution of events. It is

FIG. 7. (Color online) Focus on local activation processes. Pan-
els (a) and (b) show typical distributions P (τl,i) of individual unit
TFPs τl,i for a single realization of the assembly activation process
at (D1,D2) below and above the stochastic bifurcation, respectively.
In the subcritical state, one finds two excitation waves, the first being
induced by noise, whereas the other is due to relaxation of units. In
the supercritical state, the units are primarily elicited by noise. The
system parameters are D1 = 0.,D2 = 0.00009,c = 0.1,N = 300 in
(a) and D1 = 0.0002,D2 = 0.00025,c = 0.1,N = 300 in (b).

well known that the latter distribution is consistent with the
Poisson process [36,38].

Additional information on R behavior can be gained by
comparing the TFP distributions of activation events over
an ensemble of different stochastic realizations for (D1,D2)
representative of the domains below or above the stochastic
bifurcation (not shown). The main point concerns how likely
are the deviations biased toward the shorter or longer activation
times for an ensemble of realizations. Below the bifurcation,
the ensemble of events under formulations 2 and 3 typically
splits into fractions with short or very long TFPs. Though
the former fraction is considerably larger, the long events
still strongly influence the mean TFP. The partition into two
fractions persists under formulation 1, though the difference
in duration between the two characteristic types of events is
considerably reduced. The distribution of TFPs is then found
to be bimodal, showing two relatively even peaks. These
points are consistent with the differences displayed by the
three R(D1,D2) dependencies in Fig. 6 in the stochastically
subcritical state. Nevertheless, above the bifurcation, qualita-
tively similar behavior for all three formulations of activation
event is recovered. As expected, the TFPs follow a unimodal
distribution centered around the short events, whereby a longer
tail becomes visible for formulation 1 if D1 is increased. The
latter accounts for the rise of R with D1 in Fig. 6(c).

B. Distribution of single units’ TFPs

Having analyzed the properties of collective activation
process for an ensemble of different stochastic realizations
at fixed (D1,D2), we now consider the dynamics of local
activation processes for a single realization of an assembly
event. In particular, we focus on how the TFPs of individual
units are distributed for noise domains below or above the
stochastic bifurcation. As for the underlying mechanism, an
interesting point is to examine the contribution of noise-
induced local activation events relative to the ones elicited by
the relaxation processes of other units. We find that the typical
profiles of the distribution of individual TFPs below and above
the stochastic bifurcation differ considerably, as illustrated in
Fig. 7(a) and Fig. 7(b), respectively. Note that the qualitatively
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analogous results are obtained if one compares the corre-
sponding distributions of individual TFPs for all units over
an ensemble of different stochastic realizations (not shown).

The bimodal distribution in Fig. 7(a) suggests the existence
of two “waves” of local excitation. While the first wave (short
TFPs) is elicited by noise, the second wave is evoked by
relaxation of the units that have already emitted the spike
(such stimuli are conveyed via the interaction terms). This
physical picture is reminiscent of the one obtained when
determining the phase response curve of an assembly of
oscillators subjected to random perturbations [39]. Note that
the smallest TFPs are around 20 a.u., which is about the length
of the spike excitation loop, i.e., the duration of the typical
relaxation process. This indicates the existence of activation
barrier associated to first pulse emission process of single units.
Apart from the time scales involved, a remark should also be
added regarding the sizes of waves, viz. the fractions of units
participating the waves. The sizes are found to depend on D1,
D2, and c, whereby the stronger c expectedly amplifies the
secondary wave. One would further expect the secondary wave
to be substantially influenced by the topology of interactions
within the network.

Above the stochastic bifurcation, the local activation events
no longer maintain the two-wave-like form, see Fig. 7(b). In-
stead, the typical distribution of single unit TFPs becomes uni-
modal, with some differences observed for the cases of inter-
mediate versus large noise intensities. In particular, in the latter
case the peak is more pronounced than in the former, whereby
the distribution profile itself may be fitted to a Lorentzian-like
form. The very fact that the distribution of local TFPs is
unimodal in the stochastically supercritical state implies that
the activation of single units is almost exclusively driven by
noise. Nonetheless, the point that the TFPs are typically of
the order of the excitation loop suggests the lack of activation
barrier in the first pulse emission processes of single units.

C. Activation mechanisms below and
above stochastic bifurcation

While discussing τ (D1,D2) behavior in Fig. 3, it has already
been established that below the stochastic bifurcation, the
assembly activation process under formulations 2 and 3 is
not primarily affected by the first pulses of individual units
but is more likely contributed to by the latter spikes. In these
cases, we have identified gradual coherence buildup between
individual spikes as the mechanism underlying assembly
activation. Nevertheless, results in Fig. 7(b) suggest that a
potentially different scenario of assembly activation is typical
above the stochastic bifurcation. Therefore, our next goal is to
explicitly demonstrate the distinction between the mechanisms
guiding the assembly activation below or above the stochastic
bifurcation. To this end, we numerically determine the most
probable trajectories for the first pulse emission process in the
(X,Y ) configuration space and analyze the differences between
the typical paths obtained for (D1,D2) below or above the
stochastic bifurcation, cf. Fig. 8. The trajectories presented
conform to formulation 2 of the assembly activation event
with the fixed threshold value X0 = 0.3.

The details of the applied numerical method are as
follows. For the given (D1,D2), we consider the ensemble of

FIG. 8. (Color online) Most probable activation paths for the
global variables (X,Y ) under formulation 2 of the activation event.
The two illustrated profiles are typical for noise domains below
(empty squares) and above (filled circles) the stochastic bifurcation.
The shown paths refer to particular noise intensities (D1,D2) =
(0,0.00009) and (D1,D2) = (0,0.0004), respectively. Note that the
assembly’s maximum likelihood trajectories correspond to the peak
of the histogram obtained for an ensemble of different stochastic
realizations as a function of time. The paths for the assembly
are compared against the one for the approximate model (6)
(“macroscopic FHN unit”). The nullclines (NULL) of this model
are presented by the dashed lines, whereas the canardlike trajectory
(CNRD) is denoted by the dotted line. The trajectory generated by
the effective Hamiltonian system associated with (6) is given by the
dash-dotted line. The solid line indicates the threshold X0 = 0.3. The
results for the assembly refer to system size N = 100 and are obtained
by averaging over a 1000 different stochastic realizations of the first
pulse emission process.

fluctuation paths that start at moment ti from the deterministic
fixed point (Xeq,Yeq) and reach the terminating boundary
defined by the threshold X0, cf. the solid line in Fig. 8. At
ti , all the individual units are prepared to the same initial
conditions, i.e., (x(ti),y(ti)) = (Xeq,Yeq). The terminating
time tf , as well as Y (tf ) are left unspecified. For the described
ensemble, we consider statistics of the (X(t),Y (t)) position
of trajectories as a function of time ti < t < tf preceding the
arrival to X0 = 0.3. Naturally, the recorded trajectories may
have quite distinct tf times. The proper statistical quantity
to characterize such an assembly of paths in configuration
space is the prehistory probability density, first introduced
in Ref. [40] and successfully applied many times since [41].
The former can effectively be obtained if the time when each
stochastic realization terminates is set to t = 0, such that
the behavior of the process during the initiation of the pulse
is observed by looking backward in time. The appropriate
prehistory probability distribution is then defined as
H (X,Y,t)dXdY = Pr[X(t) ∈ (X,X + dX),Y (t) ∈ (Y,Y +
dY )|X(tf ) = X0,X(ti) = Xeq,Y (ti) = Yeq],ti < t < tf ,X < X0.
The most probable path for the first pulse emission process
is determined by collecting the points (Xm(t),Ym(t)) that
correspond to the maximum of H (X,Y,t) at the given t .

In Fig. 8, the most probable activation paths typical for
the noise domains below (above) the stochastic bifurcation
are indicated by the empty squares (filled circles). In order
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to explain the differences between the presented paths, it is
useful to invoke the approximate model (6), which effectively
assumes that all the units are strongly synchronized. In other
words, that model refers to a scenario where the assembly
acts as a macroscopic FHN unit. The dashed lines in Fig. 8
denote the nullclines of (6). Further, since the latter has
the form analogous to the dynamics of a single FHN unit,
we may borrow from our previous paper [16] the results
obtained for such a setup. In particular, we plot the canardlike
trajectory belonging to the “ghost separatrix” [17], cf. the
dotted line in Fig. 8, as well as the trajectory generated by the
system of effective Hamiltonian equations associated to (6) as
discussed in our previous paper [16] (see the dash-dotted line
in Fig. 8). Note that the most probable activation paths for a
single FHN unit are only sensitive to the external or internal
character of noise but not to the particular noise intensities
[16,17].

For the trajectory corresponding to the noise domain below
the stochastic bifurcation (empty squares) one finds that the
approximate model (6) does not apply. From the latter point,
one further infers that the units are not coherent during
the initial part of the first pulse emission process, which is
consistent with the already described scenario of a gradual
buildup of spike coherence. The mechanism of first pulse
emission differs for the noise domain above the stochastic
bifurcation. Recall that the stochastic bifurcation underlies
transition to noise-induced oscillations, which are facilitated
by the (stochastic) synchronization of individual units. With
this in mind, it is expected that the corresponding most
probable first pulse emission trajectory (filled circles) will
conform much better to physical picture behind model (6). In
the initial part of the activation trajectory, there is (stochastic)
synchronization between the units of the assembly, such that
the assembly’s activation path indeed fits well to the path
given by the “macroscopic FHN unit” model (6). Note that
the deviation from the path corresponding to (6) is observed
in the latter part of the assembly activation trajectory. This is
a natural consequence of the fact that the spike times of single
units in the assembly are synchronized approximately but are
not exactly matched. Thus, the effect of noise in the latter part
of activation trajectory is felt more strongly for an assembly
than in case of the effectively single FHN unit model (6). As
expected, the described physical picture on the supercritical
state breaks down if the noise intensity is too large.

D. Mean TFP antiresonance as a system-size effect

In this subsection, we briefly report on a system-size effect
which discriminates between the different formulations of the
assembly activation event. In particular, the effect is observed
when applying formulations 2 and 3 which concern the dy-
namics of global variables, but is absent for formulation 1 that
refers to local activation events. The system-size effect consists
of the appearance of an antiresonant peak in the dependence of
mean TFP with N for the fixed parameter set (D1,D2,c). The
term antiresonance is applied in a sense that, under variation
of N , the mean TFPs exhibit a maximum for the particular
size of the assembly. Note that the effect is found for (D1,D2)
values both below and above the stochastic bifurcation but is
substantially more pronounced in the stochastically subcritical

FIG. 9. (Color online) Focus on the antiresonant system-size
effect for τ . Panels (a) and (b) illustrate the τ (N ) dependencies
typical for subcritical noise intensities, whereby (a) conforms to
formulation 2 and (b) to formulation 3 of the assembly activation
event. Both plots are obtained for the same set of parameter values
(D1,D2,c) = (0.0001365,0.0002255,0.1), with the threshold in (a)
fixed to X0 = 0.4. The stochastic averaging at each point has been
carried out over an ensemble of 1000 different activation paths.

state. As an illustration, in Figs. 9(a) and 9(b) the τ (N )
dependencies are shown corresponding to formulations 2 and
3, respectively, whereby the noise intensities are typical for
the domain below the stochastic bifurcation. Apart from the
fact that the formulation 1 does not admit similar behavior, it
also yields τ (N ) dependence that exhibits only a weak decline
with N . As already indicated, under formulations 2 and 3 the
antiresonant effect persists above the stochastic bifurcation.
Nevertheless, the τ (N ) maximum in this domain reduces with
noise and further shifts to smaller N . For a comprehensive
understanding of the described antiresonant system-size effect,
one would have to carry out an elaborate analysis on a
number of issues independent on the present study. The focus
should primarily lie with the mechanisms contributing the long
activation events, including the details on how the competition
between the noise- and relaxation-induced local activation
processes is affected by the system size.

VI. SUMMARY

The present study has been aimed at characterizing the
excitable behavior and the noise-influenced activation process
of an assembly of class II excitable units whereby each
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unit is subjected to external and internal noise. The analysis
is an extension of our previous work [16] concerning the
activation processes for a single and two interacting FHN
elements. In conceptual terms, three points can be regarded
as most relevant ones. First, we have explicitly demonstrated
that an assembly of excitable FHN units may itself exhibit
macroscopic excitable behavior. As a second point, we have
established the qualitative analogy between the statistical
properties of the noise-driven activation processes for a single
FHN unit and an assembly. Finally, it has been shown that
depending on the noise intensities, two qualitatively distinct
local mechanisms may have prevailing effect on the assembly
activation process.

The first point has been achieved by implementing the
appropriate MF approach, which ultimately yields the ap-
proximate model (5). As in case of a single FHN unit, the
threshold-like dynamics separating the assembly’s spiking
responses from the small-amplitude excitations has been
linked to the ghost separatrix. An additional result is that
compared to excitable dynamics of a single FHN unit for
the analogous parameter set, the dynamics of the assembly
exhibits larger sensitivity to initial conditions in vicinity of the
ghost separatrix.

As for the second point, establishing the qualitative analogy
in statistical properties of the activation processes of a single
unit and an assembly is a nontrivial result that could not
be expected a priori. To facilitate the comparison between
the respective activation processes, we have introduced three
alternative formulations of the assembly activation event,
each emphasizing different aspects of collective dynamics.
Formulation 1 deliberately makes no mention of global
variables, such that the effects of coherence of individual units’
spikes are left aside. At variance with this, formulations 2 and
3 are stated in terms of global variables, such that the former
involves an explicit scalar threshold for the spiking response,
whereas the latter incorporates an appropriate terminating
boundary set analogous to the one we adopted for a single
and two interacting FHN units [16].

The analysis on statistical properties of assembly activation
process has been carried out by determining the τ (D1,D2)
and R(D1,D2) dependencies for the three alternative formu-
lations of the activation event. All three formulations yield
qualitatively analogous results for the mean TFPs, but certain
quantitative differences are manifested in the subcritical
regime. These differences are due to microscopic mechanisms
behind the assembly activation and concern the role of spike
coherence in the onset of activation event. In particular, the
activation processes under formulations 2 and 3 are mediated
by the gradual buildup of spike coherence, whereas in case of
formulation 1 spike coherence is not relevant.

We have further found that the statistical properties
associated to macroscopic excitable behavior qualitatively
resemble those for a single unit [16]. The observed qualitative
similarity, both with respect to three formulations of the
assembly activation event and compared to the case of a
single FHN unit, has been tied to stochastic bifurcation that
underlies transition from the stochastically stable fixed point
to continuous oscillations. The stochastic bifurcation has
been analyzed within the framework of the MF model (5),
demonstrating that the latter undergoes Hopf bifurcation for

the noise intensities that qualitatively coincide with those
that give rise to stochastic bifurcation of the exact system.
The stochastic bifurcation has been shown to account for the
transition between the (D1,D2) domains admitting large mean
TFPs and the plateau region.

As for our third main point, the analysis of the mechanisms
behind the local activation processes has revealed substantial
differences between the stochastically subcritical and the
supercritical state. In the former case, two excitation waves
may be discerned: The first is elicited by noise, whereas the
second wave is due to relaxation of units, viz. is evoked by
the interaction terms. For this scenario, one is able to confirm
the existence of a potential barrier associated to single unit
activation. At variance with this, above the stochastic bifurca-
tion, the local activation processes are strongly influenced by
noise.

The respective roles of noise and interaction terms in the
mechanisms leading to assembly activation have further been
examined by considering the most probable activation paths
characteristic for the noise domains below and above the
stochastic bifurcation. The analysis is based on comparing
the results for the assembly to the appropriate most probable
activation path of the approximate model (6). The latter model
assumes strong synchronization between the units, effectively
describing the assembly as a macroscopic FHN unit. For the
subcritical state, the analysis corroborates the gradual buildup
of spike coherence as the leading mechanism behind the
assembly activation. This mechanism is naturally influenced
by the interaction terms. Nevertheless, above the stochastic
bifurcation, noise facilitates stochastic synchronization be-
tween the units, rendering the interaction terms negligible.
In this scenario, the assembly activation process may indeed
be compared to that of the approximate model (6).

In terms of details specific for the assembly excitable
behavior, an interesting finding concerns a system-size effect,
which consists in the appearance of an antiresonant peak in the
τ (N ) dependence under fixed (D1,D2). While τ (N ) displays a
maximum for arbitrary noise intensities, the maximum is still
substantially more pronounced below than above the stochastic
bifurcation.

Apart from providing insights into the assembly activation
process, the present study has raised a number of novel issues.
For example, the future research may include a systematic
study on the mechanisms behind the reported system-size
effect or could focus on the impact of connection topology
on the activation process. Another relevant point would be to
consider whether the qualitative aspects of behavior found here
are paradigmatic, i.e., whether they persist if the assembly is
built of type I instead of type II excitable units.
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